
Access to Legal Documents:
Exact Match, Best Match, and Combinations

Avi Arampatzis1 Jaap Kamps1,2 Marijn Koolen1 Nir Nussbaum2

1 Archives and Information Studies, Faculty of Humanities, University of Amsterdam
2 ISLA, Informatics Institute, University of Amsterdam

Abstract: In this paper, we document our efforts
in participating to the TREC 2007 Legal track. We
had multiple aims: First, to experiment with using
different query formulations, trying to exploit the
verbose topic statements. Second, to analyse how
ranked retrieval methods can be fruitfully com-
bined with traditional Boolean queries. Our main
findings can be summarized as follows: First, we
got mixed results trying to combine the original
search request with terms extracted from the ver-
bose topic statement. Second, by combining the
Boolean reference run wit our ranked retrieval run
allows us to get the high recall of the Boolean re-
trieval, whilst precision scores show an improve-
ment over both the Boolean and the ranked re-
trieval runs. Third, we found out that if we treat
the Boolean query as free text with varying de-
grees of interpretation of the original operator, we
get competitive results. Moreover, both types of
queries seem to capture different relevant docu-
ments, and the combination between the request
text and the Boolean query leads to substantial
gain in precision and recall.

1 Introduction

In our first participation in the Legal track, we experimented
with different query formulations and run combinations.
Since the focus in the Legal track ad hoc evaluation is on re-
call oriented measures, we investigated methods to increase
recall by combining result lists based on different query
representations. We also analyzed differences between our
ranked retrieval runs and the Boolean reference run, and in-
vestigated ways to fruitfully combine the strengths of both
approaches. Finally, we also checked different methods of
exploiting the Boolean topic statements and combinations
thereof with the request text.

The rest of this paper is organized as follows. In Section 2,
we describe the experimental set-up. In Section 4, we dis-
cuss our official submission, results, and additional experi-
ments. Finally, we summarize our findings in Section 5.

2 Experimental Set-up
Our retrieval system is based on the LUCENE engine version
1.9 [4].

2.1 Index
the Legal track uses a test collection, containing 6,910,192
documents (∼58Gb uncompressed). The documents are
from the legal domain, on issues of the tobacco industry.
The documents are all in XML format, containing limited
meta-data.

We created two separate indexes as follows.

Full-text: the full textual content of the documents, includ-
ing the meta-data tags, as is (∼37GB).

Text-only: the text inside the tags, not including the tags
(∼33GB).

During indexing, we captured the document ID and stored
it in the index. In tokenization, we removed the common
stop-words and stemmed using the Snowball stemming al-
gorithm [5].

The original corpus contains almost 7 million documents
in 650 files and is over 58Gb uncompressed data. The
file-name convention is iitcdip.x.y.xml, where x is
a letter a-z (excluding s) and y is a letter a-z. As a
first step we decided to create 25 partial indexes for each
of the two indexing choices mentioned above, for exam-
ple: index a indexed the files iitcdip.a.a.xml to
iitcdip.a.z.xml. We chose to index in chunks be-
cause a single indexing process would have taken very long
time. Indexing in chunks enabled us to use seven comput-
ers concurrently, each indexing different chunks. Since ac-
cessing multiple indexes is substantially slower, we eventu-
ally merged the 25 indexes into one index, an action that
LUCENE is handling straightforwardly.

2.2 Retrieval Model
For ranking, we used a vector-space retrieval model. Our
vector space model is the default similarity measure in



LUCENE, i.e., for a collection D, document d, and query
q:

sim(q, d) =

=
∑
t∈q

tft,q · idft
normq

· tft,d · idft
normd

· coordq,d · weightt ,

where

tft,X =
√

freq(t, X) ,

idft = 1 + log
|D|

freq(t,D)
,

normq =
√∑

t∈q

tft,q · idft2 ,

normd =
√
|d| ,

coordq,d =
|q ∩ d|
|q|

.

3 Experiments

3.1 Runs
This was our first participation in the TREC Legal Track.
Some of the runs described in this paper are post-submission
experiments and have not been included in the pooling pro-
cess.

We made runs using the search request as stated in the
RequestedText tag:

Full-text: runs on the full-text index. In this run, we used
the Snowball stemming algorithm on the RequestedText
meta-data in the query.

Text-only: similar to full-text, but using the text-only index.

The Legal Track topics have very lengthy topic descriptions
providing a range of background information on the topic of
request. Hence, we tried to extract potentially useful terms
from them. Specifically, we decided to select only those
terms that are most characteristic for a single topic, with ref-
erence to the whole topic set. That is, the terms that best dis-
tinguish the topic at hand from the other topics in the topic
set. For this we used a variant of the parsimonious language
modeling techniques [3], and created a query by selecting
the 25 terms that are most characteristic for the topic. For
example, topic 52 reads:

Please produce any and all documents
that discuss the use or introduction of
high-phosphate fertilizers (HPF) for the
specific purpose of boosting crop yield
in commercial agriculture.

and the 25 selected terms are:

hpf sugar mh vsf gcc valhalla candy
phosphate plaintiffs its fertilizers
crop high gladsheim beet yield community
groundwater health death use fertiliz
contamination phosphat cause

We used the selected terms in the following ways:

SelectedTerms: the query string fed into LUCENE is the
original query (the RequestedText tag) appended by the
most significant 25 terms in the background informa-
tion supplied in the file fullL07 v1.xml. Duplicate
terms were removed.

CombiTextSelectedTerms: a combination of Text-only
and SelectedTerms. We used the standard combina-
tion method CombSUM [2] and combined full length
runs without normalizing the scores.

One of the main differences between our ranked-retrieval
approach and the Boolean reference run is the query: we
used the RequestedText field whereas for the reference run
the FinalQuery was used. To study the effect of the differ-
ent topic statements, we performed additional runs, trying to
exploit the terms and operators stated in the topic’s Boolean
query fields. Specifically, the tags FinalQuery, Proposal-
ByDefendant and RejoinderByPlaintiff, the former one rep-
resenting the query agreed by the sides and the two latter
ones representing the negotiation history between the defen-
dant and the plaintiff. Our experiments showed that using
FinalQuery gives better results than ProposalByDefendant
and RejoinderByPlaintiff, and we will only discuss experi-
ments using FinalQuery in this paper.

The Boolean queries, including FinalQuery that we use,
consist of terms and operators which represent a query syn-
tax, explained in [1]. Since this syntax does not correspond
to Lucene’s query syntax and is actually more expressive
than Lucene’s syntax, we did some translation of the queries
to a Lucene-readable syntax. Unfortunately, Lucene’s ability
to deal with multiple wildcards is very limited in such a big
index (using too many wildcards would lead to a crash with
a ’too many clauses’ error message) and we had to translate
them as well.

The runs are as following:

BoolTermsOnly: The terms alone are used; all the other
characters, such as parentheses or proximity operators
are removed.

BoolLuceneTrans: The original syntax is translated into
Lucene’s query language. Proximity operator (w/k) is
translated into AND, wildcards symbol (!) are removed
and BUT NOT is replaced by AND NOT.

BoolTermsWildcardExp: For this run we used the terms
alone and removed all the other characters except the
wildcard symbol (!). Wildcards are expanded to all
the possible variations that appear in the complete topic
text, with the OR operator between them. In this



Table 1: Statistics over judged and relevant documents per
topic.

# of per topic
topics min max median mean st.dev

judged 43 488 1,000 499 567.53 164.84
relevant 43 10 391 72 101.02 97.76
B 43 103 22,518 2,665 5,004.02 6,156.75

way, the keyword produc! in topic 52 was replaced
by produc OR production OR product OR
products.

BoolWildcardExpLuceneTrans: Here we expanded the
wildcards in the original Boolean query as we did in
the BoolTermsWildcardExp run and then translated
the result as we did in the BoolLuceneTrans run.

We were especially interested in combinations of both
types: the request text and the Boolean query text, in various
interpretations. We combined the TextOnly run with each
of the four Boolean runs, using the CombSUM method, cre-
ating CombiTextTerms, CombiTextLuceneTrans, Com-
biTextTermsWildcard and CombiTextWildcardLucene-
Trans runs.

4 Results

4.1 Topics and Judgments
The results are based on the qrels over 43 topics. Statistics
of the assessments are shown in Table 1. We include the
number of results of the negotiated Boolean query (“B” for
short), since it plays an important role in the recall oriented
measures used. It is striking that B is orders of magnitude
larger than the number of known relevant documents. More-
over, there is no significant correlation between B and the
number of relevant documents (Pearson r = 0.059). There
is a significant correlation (0.55) between the number of
judged and number of found relevant documents, which is
not unexpected.

4.2 Runs
Table 2 shows the results (all scores based on l07 eval
v1.0). First, we look at Full-text, and compare it to the sim-
ilar Text-only run. The Full-text run scores marginally bet-
ter on bpref, but the Text-Only run scores marginally better
on all other measures including the main measure, i.e. esti-
mated recall at B.

Second, we look at the SelectedTerms run. We see a drop
in performance for all measures. This is not unexpected: the
selected terms from the complete topic statement are less fo-
cused on the topic. Nevertheless, the run may have picked

up documents that are missed by the original query or im-
prove the ranking of retrieved relevant documents. Can we
use these results to improve recall in our original run? We
combine the results from the two runs Text-only and Se-
lectedTerms using standard CombSUM, i.e. we just add the
scores of the individual runs per document and re-rank. The
results are mixed. For the CombiTextSelectedTerms run,
we see a drop in MAP and Precision@10 when compared to
the best individual run, but an increase in bpref. We see a
minimal gain in recallB, but a loss of estimated recall at B.

4.3 Combining Ranked & Boolean Retrieval

We conducted further experiments trying to shed light on
the relative strength and weaknesses of our ranked retrieval
methods versus the Boolean reference run.

First, we looked at the reference Boolean run refL07B
which has unranked set results (all selected documents have
a RSV of 1). As Table 2 shows, this results indeed in very
poor MAP and P10 scores. The bpref score is comparable to
the scores of ranked retrieval (this is also clearly signalling
that bpref should not be treated as an approximation of tra-
ditional MAP). In terms of recall, the reference run is re-
trieving fewer relevant documents overall (but has only B
results per topic whereas our runs have up to 25,000). It has
slightly better recall at B, and much better estimated recall
at B. Summarizing, the reference run has unimpressive pre-
cision but very good recall.

Is there a way to combine the strength of ranked and
Boolean approaches? What we did is the following. Recall
that refL07B run assigns a score of 1 to every document.
Our runs score in the range [0, 1]. Now, consider what hap-
pens if we combine the reference run with one of our runs: it
will first have all documents of the reference run, but ranked
by our retrieval score, and then have the remaining docu-
ments from our run, again ranked by our retrieval score. The
run CombiTextRef in Table 2 combines the Text-only run
with the refL07B run. What we see is that, indeed, the
recall at B and estimated recall at B of the Boolean run are
preserved. However, the MAP, bpref, and P10 scores even
improve over the scores from the ranked retrieval run alone.
Summarizing, combining Boolean and ranked retrieval al-
lows us to get the best of both worlds: the high recall scores
of the Boolean run are maintained, while the MAP and pre-
cision scores show an improvement over both the Boolean
and the ranked retrieval run.

4.4 Boolean Queries Runs

We now look at the relative strength and weaknesses of the
different query statements, by making various runs based on
the Boolean FinalQuery field.

We first look at the four variants to derive a query from
the FinalQuery field (as discussed above). As Table 2
shows, extracting just the keywords from the Boolean query,



Table 2: Results for the Legal Track 2007 (using l07 eval v1.0). Best scores are in bold-face.

Run MAP bpref P10 num rel ret recallB est RB
Full-text 0.0878 0.3266 0.2837 3,338 0.4792 0.1448
Text-only 0.0880 0.3255 0.2860 3,339 0.4835 0.1548
SelectedTerms 0.0355 0.2619 0.1070 2,522 0.3173 0.0772
CombiTextSelectedTerms 0.0846 0.3302 0.2698 3,306 0.4841 0.1447
refL07B 0.0167 0.2902 0.0209 2,145 0.4864 0.2158
CombiTextRef 0.1181 0.3842 0.3209 3,553 0.4864 0.2158
BoolTermsOnly 0.0878 0.3274 0.2535 3,016 0.4846 0.1417
BoolLuceneTrans 0.0880 0.3039 0.2535 2,200 0.4172 0.1526
BoolTermsWildcardExp 0.1021 0.3321 0.3140 3,352 0.5122 0.1335
BoolWildcardExpLuceneTrans 0.0915 0.3250 0.2488 2,758 0.4369 0.1555
CombiTextTerms 0.1220 0.3615 0.3326 3,473 0.5673 0.1843
CombiTextLuceneTrans 0.1191 0.3683 0.3047 3,426 0.5520 0.1908
CombiTextTermsWildcard 0.1264 0.3592 0.3465 3,490 0.5627 0.1644
CombiTextWildcardLuceneTrans 0.1191 0.3665 0.3256 3,431 0.5479 0.1976

BoolTermsOnly performed slightly worse than the Text-
Only run. Adding a basic translation of the operators into
Lucene syntax as in BoolLuceneTrans gives mixed results
in terms of performance: we see a small improvement in es-
timated Recall at B, but bpref and known recall at B drop.

We added the wildcard expansion in order to compensate
somewhat for Lucene’s inability to cope with a too long
query expression. In this way we could look into the vari-
ations of the terms as they appear in the entire topic state-
ments. The whole index contains too many variations for
Lucene’s built-in equivalent, especially because of the of-
ten poor graphic quality of the original scanned documents,
which results in many mistakes during the OCR process, cre-
ating an astounding number of unique (and often wrong)
terms. A Boolean query that has a few wildcards could
be expanded internally into thousands of clauses or even
more. The runs that incorporate the wildcard expansion
(BoolTermsWildcardExp and BoolWildcardExpLucene-
Trans) did perform better in general. The general conclu-
sion of the runs based on the Boolean query is that their
performance meets and exceeds that of the keyword query
based on the RequestText field.

Finally, we look at how complementary the runs based on
the different topic fields are, by looking at their combination.
As Table 2 shows, this leads to improvement throughout.
The stricter interpretation of the FinalQuery leads to better
results (since it is more different from the original Request-
Text run) and we get close to the reference run’s score on es-
timated recall at B. The best scoring run is CombiTextWild-
cardLuceneTrans with a score of 0.1976 against 0.2158 for
the reference run. Our general conclusion is that Request-
Text and FinalQuery complete each other nicely: combining
them leads to substantial gains in precision and recall.

5 Conclusions
Our first participation in the Legal Track was driven by two
main aims. First, we experimented with using different
query formulations trying to exploit the verbose topic state-
ments. Second, we analysed how ranked retrieval methods
can be fruitfully combined with traditional Boolean queries.
Our main findings can be summarized as follows: First, we
got mixed results trying to combine the original search re-
quest with terms extracted from the verbose topic statement.
Second, by combining the Boolean reference run with our
ranked retrieval run allows us to get the high recall of the
Boolean retrieval, whilst precision scores show an improve-
ment over both the Boolean and the ranked retrieval runs.
Third, we found that if we treat the Boolean query as free
text with varying degrees of interpretation of the original op-
erator, we get competitive results. Moreover, both types of
queries seem to capture different relevant documents, and
the combination between the request text and the Boolean
query leads to substantial gain in precision and recall.

Acknowledgments This research was supported by the
Netherlands Organization for Scientific Research (NWO,
grant # 612.066.513, 639.072.601, and 640.001.501), and
by the E.U.’s 6th FP for RTD (project MultiMATCH con-
tract IST-033104).

References
[1] Trec legal README, 2007. http://trec-legal.

umiacs.umd.edu/trec07topics/
readmeL07 v1.txt.

[2] E. Fox and J. Shaw. Combination of multiple searches.
In D. Harman, editor, The Second Text REtrieval Con-
ference (TREC-2), pages 243–252. National Institute for

http://trec-legal.umiacs.umd.edu/trec07topics/readmeL07_v1.txt
http://trec-legal.umiacs.umd.edu/trec07topics/readmeL07_v1.txt
http://trec-legal.umiacs.umd.edu/trec07topics/readmeL07_v1.txt


Standards and Technology. NIST Special Publication
500-215, 1994.

[3] D. Hiemstra, S. Robertson, and H. Zaragoza. Parsimo-
nious language models for information retrieval. In Pro-
ceedings of the 27th Annual International ACM SIGIR
Conference on Research and Development in Informa-
tion Retrieval, pages 178–185. ACM Press, New York
NY, 2004.

[4] Lucene. The Lucene search engine, 2007. http://
lucene.apache.org/.

[5] Snowball. Stemming algorithms for use in infor-
mation retrieval, 2007. http://www.snowball.
tartarus.org/.

http://lucene.apache.org/
http://lucene.apache.org/
http://www.snowball.tartarus.org/
http://www.snowball.tartarus.org/

	1 Introduction
	2 Experimental Set-up
	2.1 Index
	2.2 Retrieval Model

	3 Experiments
	3.1 Runs

	4 Results
	4.1 Topics and Judgments
	4.2 Runs
	4.3 Combining Ranked & Boolean Retrieval
	4.4 Boolean Queries Runs

	5 Conclusions

